
Prepared for
Grigoriy Kopeliovich
Nikita Kinelovskii
OlegMalyshev
Stepan Bazrov
Bidask Protocol

Prepared by
Syed Faraz Abrar
Qingying Jie
Zellic

April 7, 2025

Bidask V2
Smart Contract Security Assessment

Bidask V2 Smart Contract Security Assessment April 7, 2025

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 6

2. Introduction 6

2.1. About Bidask V2 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Potential integer overflow in the function handle_swap 11

3.2. The refund operation of the LP account could be partially executed 14

3.3. The native pool does not reserve the protocol fee for native tokens 16

3.4. First depositor controls the pool's initial price and bin 18

3.5. Noncompliant transfer-notification parsing 20

3.6. Incorrect excess-amount calculation 22

3.7. Duplicated gas-amount calculation 24

3.8. Pool can get stuck in the INITING state 26

Zellic © 2025 ← Back to Contents Page 2 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.9. Incorrect payload passed to the function pay_add_liquidity_fallback 27

3.10. The range price could be set to the boundary when there are no active bins 29

4. Discussion 30

4.1. Dormant range contracts 31

4.2. Test suite 32

5. SystemDesign 32

5.1. Flow: Swapping tokens 33

5.2. Flow: Add liquidity 39

6. Assessment Results 42

6.1. Disclaimer 43

Zellic © 2025 ← Back to Contents Page 3 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2025 ← Back to Contents Page 4 of 43

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Bidask V2 Smart Contract Security Assessment April 7, 2025

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Bidask Protocol from March 10th to March 31st, 2025.
During this engagement, Zellic reviewedBidaskV2's code for security vulnerabilities, design issues,
and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Could an attacker steal liquidity deposited by other users?
• Could an attacker trigger a denial of service that prevents users fromusing the protocol?
• Could an attacker cause users' tokens to be stuck in a pool?
• Could user tokens get stuck in a pool accidentally?

1.3. Non-goals and Limitations

We did not assess the following areas that were outside the scope of this engagement:

• The amount of gas required for each operation
• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide. During this assessment, we primarily focused on the swap
andadd-liquidity flows, specifically oncritical-severity vulnerabilities that could causeusers' tokens
toget stuckor stolen. Wereportedonevulnerability related toagascheck thatwasnot sufficientand
could cause an operation to fail in themiddle of execution after passing the gas check; however, we
did not exhaustively ensure that all the gas checks were correct in all the operations. Additionally,
we analyzed the swap and deposit / remove-liquidity math, but more time for analysis could have
been beneficial. However, this was not possible in the audit's time frame, as we prioritized our time
on other important aspects of the codebase.

Zellic © 2025 ← Back to Contents Page 5 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

1.4. Results

During our assessment on the scoped Bidask V2 contracts, we discovered 10 findings. One critical
issuewas found. Onewas of high impact, twowere ofmedium impact, four were of low impact, and
the remaining findings were informational in nature.

Additionally, Zellic recorded itsnotesandobservations fromtheassessment for thebenefitofBidask
Protocol in the Discussion section (4. ↗).

Breakdown of Finding Impacts

Impact Level Count

! Critical 1

! High 1

! Medium 2

! Low 4

! Informational 2

Zellic © 2025 ← Back to Contents Page 6 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

2. Introduction 2.1. About Bidask V2

Bidask Protocol contributed the following description of Bidask V2:

Bidask isaCLMMDEXarchitectednatively for theTONBlockchain—optimized forspeed, scal-
ability, and efficiency. The fundamentally new TONDeFi protocol design brings security chal-
lenges, and security is our top priority.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect

Zellic © 2025 ← Back to Contents Page 7 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025 ← Back to Contents Page 8 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

2.3. Scope

The engagement involved a review of the following targets:

Bidask V2 Contracts

Type FunC

Platform TON

Target Excluding the limit order creation and execution

Repository https://github.com/bidask-protocol/bidask-v2-core ↗

Version 6ac271d5f763ca84ddab729470669afbfe3f4592

Programs contracts/*

2.4. Project Overview

Zellicwas contracted to performa security assessment for a total of 4.8 person-weeks. The assess-
ment was conducted by two consultants over the course of 16 calendar days.

Zellic © 2025 ← Back to Contents Page 9 of 43

https://github.com/bidask-protocol/bidask-v2-core

Bidask V2 Smart Contract Security Assessment April 7, 2025

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Syed Faraz Abrar
Engineer
faith@zellic.io ↗

Qingying Jie
Engineer
qingying@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

March 10, 2025 Kick-off call

March 10, 2025 Start of primary review period

March 31, 2025 End of primary review period

Zellic © 2025 ← Back to Contents Page 10 of 43

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:faith@zellic.io
mailto:qingying@zellic.io

Bidask V2 Smart Contract Security Assessment April 7, 2025

3. Detailed Findings 3.1. Potential integer overflow in the function handle_swap

Target range

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

Before calling the function execute_swap, the function handle_swapwill use the function to_funny
to left shift some input data by 128 bits, converting it into the so-called funny number, which can
retain certain precision during the calculation.

;; @brief Convert regular int to funny-number
int to_funny(int number) asm "128 LSHIFT#";

() handle_swap(slice in_msg_body, slice sender_address, int msg_value,
int fwd_fee) impure inline {
;; [...]

amount = to_funny(amount);

out = to_funny(out);

exact_out = to_funny(exact_out);

execute_swap(msg_value, fwd_fee, account?, amount, out, exact_out,
last_price, is_x, from_user, ref_cell, additional_data, reject_payload,
forward_payload);

}

When executing the function execute_swap, the range contract will send an op::continue_swap
message to itself or an adjacent range contract in certain cases. Since the range contract
processes the op::continue_swapmessage using the function handle_swap, the amount, out, and
exact_out need to be converted back from the funny number before calling the function
send_continue_swap.

() execute_swap (int msg_value, int fwd_fee, int account?, int amount,
int out, int exact_out, int last_price, int is_x,

slice user_address, cell ref_cell, cell additional_data,
cell reject_payload, cell forward_payload) impure inline {
;; [...]
while ((amount > 1) & (no_exact_out | (out < exact_out)) &
inside_edge_price(last_price, is_x) & (~ got_empty_range)) {

Zellic © 2025 ← Back to Contents Page 11 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

(P_a, P_b) = load_price_bounds(storage::current_bin);
if ((storage::sqrt_p <= P_a) & is_x) {

;; [...]
elseif (left_range_exists()) {

force_save_liquidity();
send_continue_swap(storage::left_range_address, account?,

is_x, from_funny(amount), from_funny(out),
exact_out, last_price, ref_cell, user_address, additional_

data, reject_payload, forward_payload);

save_storage();
return ();

}
;; [...]

} elseif ((P_b <= storage::sqrt_p) & (~ is_x)) {
;; [...]
elseif (right_range_exists()) {

force_save_liquidity();
send_continue_swap(storage::right_range_address, account?,

is_x, from_funny(amount), from_funny(out),
exact_out, last_price, ref_cell, user_address, additional_

data, reject_payload, forward_payload);

save_storage();
return ();

}
;; [...]

} else {

;; [...]

if (gas_consumed > gas_limit - 100000) { ;; 100000 for all other
instructions

force_save_liquidity();
send_continue_swap(my_address(), account?, is_x,

from_funny(amount), from_funny(out),
exact_out, last_price, ref_cell, user_address, additional_

data, reject_payload, forward_payload);

save_storage();
return ();

}
;; [...]

}

Zellic © 2025 ← Back to Contents Page 12 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

}
;; [...]

}

Impact

When exact_out is greater than zero, the continue-swap operation will fail due to integer overflow,
and the input tokens will be locked in the pool.

Recommendations

Consider using the function from_funny to convert exact_out back before calling the function
send_continue_swap.

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
cff58459 ↗.

Zellic © 2025 ← Back to Contents Page 13 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/cff584598b8fa5d64db98a831996985507348d8a

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.2. The refund operation of the LP account could be partially executed

Target lp_account

Category CodingMistakes Severity High

Likelihood Medium Impact High

Description

The LP account is an intermediarymanagement contract usedwhen providing liquidity for two
types of jettons simultaneously. It records the amount of jettons currently sent by the user.

The owner of the LP account can use the operation op::refund_me to send a request to the pool to
withdraw the jettons sent to the pool but not yet deposited. However, the LP account forwards the
remaining value to the pool without checking if the msg_value is enough to pay the gas for this
operation.

if(op == op::refund_me) {
throw_unless(error::NO_LIQUIDITY, (storage::amount0 > 0) |
(storage::amount1 > 0));

builder msg = begin_cell()
.store_uint(op::cb_refund_me, 32)
;; [...]
.store_uint(0, 1);

send_simple_message(0, storage::pool_address, msg.end_cell(),
CARRY_REMAINING_GAS);

storage::amount0 = 0;
storage::amount1 = 0;

save_storage();
return ();

}

Impact

It is possible that the caller does not provide sufficient TONs, causing the refund operation to be
partially executed. For example, op::refund_memay execute successfully in the LP account, but
op::cb_refund_me in the pool may fail due to running out of gas. In this case, the
storage::amount0 and storage::amount1 in the LP account have already been updated. The user

Zellic © 2025 ← Back to Contents Page 14 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

cannot retry this refund, and their funds are locked in the pool.

Recommendations

Consider checking if the msg_value is sufficient to cover the gas required for full execution of the
refund operation.

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
9f334f9c ↗.

Zellic © 2025 ← Back to Contents Page 15 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/9f334f9c5304337012565b688a15b5aa40f46ea9

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.3. The native pool does not reserve the protocol fee for native tokens

Target pool

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The pool contract collects protocol fees from the returned funds of the swap and accumulates
them in the storage::collected_token1_protocol_fee or
storage::collected_token2_protocol_fee.

() handle_swap_success(slice in_msg_body, int msg_value, slice sender_address)
impure inline {

var (account?, amount1, amount2, is_x, to, has_ref, ref_addr,
additional_data, reject_payload, forward_payload) =
in_msg_body~parse_swap_success();
;; [...]

storage::token1_amount -= amount1;

storage::token2_amount -= amount2;

;; [...]
if (is_x) { ;; is_x declares which of two tokens was swapped. If is_x is
true, token1 was swapped to token2

;; [...]

ref_fee2 = amount2~get_fees(is_x, has_ref);

storage::token2_amount += ref_fee2;
}
else {

;; [...]

ref_fee1 = amount1~get_fees(is_x, has_ref);

storage::token1_amount += ref_fee1;
}
;; [...]

}

(int, (int)) ~get_fees(int amount, int is_x, int has_ref) impure inline {
int protocol_fee = amount * storage::protocol_fee / BASE_FEE;
;; [...]
amount -= protocol_fee;

Zellic © 2025 ← Back to Contents Page 16 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

if (is_x) {

storage::collected_token2_protocol_fee += protocol_fee;

}
else {

storage::collected_token1_protocol_fee += protocol_fee;

}
return (amount, (ref_fee));

}

Additionally, the pool uses the raw_reservemechanism andmessagemode 128 to ensure that the
contract balance after each operation is a specific value. For a pool with both assets as jettons, this
value is the BUFFER_AMOUNT. For a native pool where one of the assets is TON, this value should be
storage::token2_amount + storage::collected_token2_protocol_fee + BUFFER_AMOUNT, but
only storage::token2_amount + BUFFER_AMOUNT is reserved in the implementation.

Impact

The native pool cannot collect protocol fees in native tokens.

Recommendations

Reserve storage::token2_amount + storage::collected_token2_protocol_fee +
BUFFER_AMOUNT amount of TONs for the native pool.

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
72713f09 ↗.

Zellic © 2025 ← Back to Contents Page 17 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/72713f0985b7e7f55d0329d2e273eff529adaf09

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.4. First depositor controls the pool's initial price and bin

Target pool, range

Category CodingMistakes Severity High

Likelihood Low Impact Medium

Description

Initially, all range contracts will have their storage::sqrt_p state variable set to 0. Looking at the
handle_provide_liquidity() function in the range contract, a user is able to set up the initial bin
and price arbitrarily (current_bin and initial_sqrt_price are controlled by the depositor):

() handle_deposit_liquidity(slice in_msg_body, int msg_value, int fwd_fee)
impure inline {
notify_amount = notify_nearbies();
;; [...]

if (storage::sqrt_p == 0) {
int success = init_range(current_bin, initial_sqrt_price);
ifnot (success) {

pay_add_liquidity_fallback(storage::first_bin(), user_address,
provide_amount_x, provide_amount_y, forward_payload);

commit();
throw(error::POOL_INIT_FAILED);

}
}

;; [...]
}

Note that both current_bin and initial_sqrt_price are controllable only when the pool itself
has not had any deposits, meaning that the depositor must be the first depositor.

Impact

Since the first depositor is able to control these parameters, they can set up the pool with an
arbitrary initial price and bin. This allows them to set the price to an extremely high or low value,
which would then disincentivise users from using the pool.

This bug could be alleviated by recreating a new pool contract, but an attacker who could
continuously front-run other first depositors can continuously set these extreme initial prices and

Zellic © 2025 ← Back to Contents Page 18 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

bins. This would end up either disincentivising users from using these pools or forcing them to use
these pools without other alternatives.

The potential severity of the vulnerability is critical, as it could allow an attacker to set up ranges
with invalid prices and active bins in relation to each other. One example is that the attacker can
provide a specific current_bin to cause the function init_range to fail, making an uninitialized
range send an op::range_notifymessage to its neighbor ranges. This will affect the execution of
the swap flow. Because the op::range_notifymessage informs the neighbor ranges of its
existence, the op::continue_swapmessagemay be sent to this uninitialized range. This could
result in users losing their funds for the swap.

Recommendations

We recommend that the pool's deployer sets up the initial price and bin. Subsequent ranges can be
set upwith prices and bins set up on the edges of their price range.

For example, if we have ranges (A, B, C) for a pool, the pool deployermight choose a price and bin
within range B. Afterwards, range Awould automatically have the price set to the highest price
possible in itself, with the highest possible bin set as the active range, and range Cwould have the
opposite (lowest possible bin with lowest possible price).

Remediation

This issue has been acknowledged by Bidask Protocol, and fixes were implemented in the
following commits:

• 9932436a ↗
• d533f46d ↗

Zellic © 2025 ← Back to Contents Page 19 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/9932436aabe14b52910db9c4f92c8667053a4565
https://github.com/bidask-protocol/bidask-v2-core/commit/d533f46d21ee1611bcc34c579c287cf7ced4ee2f

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.5. Noncompliant transfer-notification parsing

Target pool

Category CodingMistakes Severity Low

Likelihood N/A Impact Low

Description

The implementation of the pool contract parsing the op::transfer_notificationmessage is not
compliant with the official jetton standard.

if (op == op::transfer_notification) { ;; for jetton income proccesing
(int jetton_amount, slice from_user, slice ref_ds) =

(in_msg_body~load_coins(), in_msg_body~load_msg_addr(),
in_msg_body~load_ref().begin_parse());
;; [...]

}

It assumes that the forward_payload data is always stored in a cell reference, but according to the
specification ↗, the transfer_notification type is:

transfer_notification#7362d09c
query_id:uint64
amount:(VarUInteger 16)
sender:MsgAddress
forward_payload:(Either Cell ^Cell) = InternalMsgBody;

The forward_payload could be in-lined in the transfer-notificationmessage.

Impact

This issue could cause the transaction to fail with assets that in-line the forward payload.

Recommendations

Consider handling all possible cases allowed by the specification when parsing transfer
notifications.

Zellic © 2025 ← Back to Contents Page 20 of 43

https://github.com/ton-blockchain/TEPs/blob/master/text/0074-jettons-standard.md#1-transfer

Bidask V2 Smart Contract Security Assessment April 7, 2025

Remediation

This issue has been acknowledged by Bidask Protocol.

Bidask Protocol provided the following response to this finding:

We decided not to support another interfaces, because user can fully control trans-
fer_notification flowwith forward_payload delivery to pool.

Zellic © 2025 ← Back to Contents Page 21 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.6. Incorrect excess-amount calculation

Target range

Category CodingMistakes Severity Low

Likelihood N/A Impact Low

Description

The function pay_excess_and_mint_lp is used to send op::mintmessages to the LPwallet and
return excess TONs to the user. However, when calculating the amount_for_excess, the
total_gas_consumed is mistakenly used, which is the total required gas amount instead of the total
required gas fee.

() pay_excess_and_mint_lp(int msg_value, int forward_fee, slice user_address,
int x_excess, int y_excess,

int bins_num, cell lp_tokens_to_mint,
cell forward_payload) impure inline {
int total_gas_consumed = gas_consumed() + 25000 + notify_amount *
(GAS_FOR_NOTIFY + 8000); ;; 25 000 - gas for remaining operations
int amount_for_excess = (msg_value - total_gas_consumed) / 2;
;; [...]

}

Impact

Since the gas amount is not multiplied by the gas price to obtain the gas fee, the computed
amount_for_excessmay be higher than expected, resulting in fewer TONs being sent with the
op::mintmessage.

Recommendations

Consider updating this based on the following code:

int amount_for_excess = (msg_value - total_gas_consumed) / 2;

int amount_for_excess = (msg_value - total_gas_consumed * gas_price) / 2;

Zellic © 2025 ← Back to Contents Page 22 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
3b79cdb6 ↗.

Zellic © 2025 ← Back to Contents Page 23 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/3b79cdb66a55f93319591a80e7633057d9761e3e

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.7. Duplicated gas-amount calculation

Target range

Category CodingMistakes Severity Low

Likelihood N/A Impact Low

Description

The total_gas_consumed calculated by the function pay_excess_and_mint_lp consists of three
parts: 1) the gas amount already consumed by executing the operation
op::range_provide_liquidity or op::continue_provide_liquidity in the range contract, 2)
the gas amount required for the remaining execution, and 3) the gas amount needed to send the
op::range_notifymessage.

() pay_excess_and_mint_lp(int msg_value, int forward_fee, slice user_address,
int x_excess, int y_excess,

int bins_num, cell lp_tokens_to_mint,
cell forward_payload) impure inline {
int total_gas_consumed = gas_consumed() + 25000 + notify_amount *
(GAS_FOR_NOTIFY + 8000); ;; 25 000 - gas for remaining operations
;; [...]

}

The gas amount for sending the op::range_notifymessage includes the gas amount to send and
the gas amount required to execute the function notify_nearbies. But the latter is already
included in the first part of the total_gas_consumed.

int notify_nearbies() impure inline_ref {
int amount = 0;
ifnot (storage::left_notified) {

;; [...]
send_message_with_stateinit(GAS_FOR_NOTIFY * gas_price,

left_range_address, left_range_state_init, body.end_cell(), 0);
amount += 1;

}
;; [...]

}

Zellic © 2025 ← Back to Contents Page 24 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

Impact

The gas amount required for executing the function notify_nearbies is double-counted, resulting
in the range contract charging higher fees than expected.

Recommendations

Consider updating this based on the following code:

int total_gas_consumed = gas_consumed() + 25000 + notify_amount * (GAS_FOR_

NOTIFY + 8000);

int total_gas_consumed = gas_consumed() + 25000 + notify_amount * GAS_FOR_

NOTIFY;

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
489b2095 ↗.

Zellic © 2025 ← Back to Contents Page 25 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/489b2095680d2fc122558a7fec8711bcfda4fd97

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.8. Pool can get stuck in the INITING state

Target pool

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The gas check in the handler for op::add_liquidity in the pool contract is insufficient. From
testing, we have found that a user can provide just enough TON to pass the check but then cause
the transaction fo fail in themiddle of handling the operation.

Additionally, there is no check to ensure that the sqrt_p provided by the first depositor is not zero.

Impact

In both the above cases, the pool will get stuck in the INITING state, which will then require an
admin to unlock the pool manually.

Recommendations

We recommend adding gas benchmark tests in order to know howmuch gas is used in each
operation. This will allow refining all gas checks in all contracts so that transactions cannot fail in
themiddle of an operation.

We also recommend adding a check that ensures that the initial sqrt_p set by the first depositor is
not zero.

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
67b5db36 ↗.

Zellic © 2025 ← Back to Contents Page 26 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/67b5db36557fd3dbdc4851f9ae558692a3ee6ead

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.9. Incorrect payload passed to the function pay_add_liquidity_fallback

Target range

Category CodingMistakes Severity Informational

Likelihood Low Impact Informational

Description

The function handle_deposit_liquidity receives reject_payload and forward_payload from
the input. When init_range fails, it passes forward_payload to the function
pay_add_liquidity_fallback to construct and send an op::add_liquidity_fallback operation
to the pool.

() handle_deposit_liquidity(slice in_msg_body, int msg_value, int fwd_fee)
impure inline {
;; [...]
(int provide_amount_x, int provide_amount_y, int first_four_bins,
cell tokens, slice user_address,
cell reject_payload, cell forward_payload, int current_bin,

int initial_sqrt_price) = parse_provide_custom_liquidity(in_msg_body);

if (storage::sqrt_p == 0) {
int success = init_range(current_bin, initial_sqrt_price);
ifnot (success) {

pay_add_liquidity_fallback(storage::first_bin(), user_address,

provide_amount_x, provide_amount_y, forward_payload);

commit();
throw(error::POOL_INIT_FAILED);

}
}

;; [...]
}

However, the operation op::add_liquidity_fallback expects a reject payload.

if (op == op::add_liquidity_fallback) { ;; unexpected handler. Not expected to
be called.
;; [...]
cell reject_payload = in_msg_body~load_maybe_ref();

Zellic © 2025 ← Back to Contents Page 27 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

;; [...]

send_assets(msg_value, 9500, user_address, amount1, amount2,
reject_payload, reject_payload);
save_storage();
return ();

}

Impact

The usermay be confused if the payload forwardedwith the tokens is inconsistent with the pool
execution result.

Recommendations

Consider passing the reject_payload to the function pay_add_liquidity_fallback.

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
f1d1d419 ↗.

Zellic © 2025 ← Back to Contents Page 28 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/f1d1d4197e875259fc9fceca4a1338bd9f98d4d1

Bidask V2 Smart Contract Security Assessment April 7, 2025

3.10. The range price could be set to the boundary when there are no active bins

Target range

Category Optimization Severity Informational

Likelihood N/A Impact Informational

Description

When the price of a pool crosses from one range to another, the old range needs to be left in the
correct state.

For example, assume that a pool has three range contracts A, B, and C. If range B is the current
active contract, and a swap causes the price to drop and go into range A, then range B's active bin
should be set to the very first bin, and its price should be set to the lowest possible price of that bin.

If a swap causes the price to increase and go into range C, then the opposite should happen. (The
active bin should be set to the highest possible bin, and the price should be set to the highest
possible price.)

In the Bidask protocol, the move_bin_left() and move_bin_right() functions are used to handle
moving from bin to bin. In the case where there is no available bin to the left, the following code is
executed in move_bin_left():

() move_bin_left() impure inline {
if ((storage::current_bin % BINS_IN_ONE_ELEMENT == 0)) {

;; Zellic: this is the first bin in this bin group
force_save_liquidity();
(int index, slice bins_slice, int flag) =

storage::bins_dict.idict_get_prev?(32,
get_bins_group(storage::current_bin));

if (flag) { ;; Zellic: this means a bin was found to the left
;; [...]

}
else {

storage::current_bin = storage::first_bin();
}
(P_a, P_b) = load_price_bounds(storage::current_bin);
storage::sqrt_p = P_b; ;; Zellic: set the price to the upper bound of

the new bin
}
else {

storage::current_bin -= 1;
}

Zellic © 2025 ← Back to Contents Page 29 of 43

Bidask V2 Smart Contract Security Assessment April 7, 2025

}

In the above code, we can see that if a bin is not found to the left of the current bin, the code simply
sets storage::current_bin to storage::first_bin(). The intention here is for the calling code
to later send the swap over to the left range, and so the very first bin is set as the active bin.

However, in this case, the current price of the range (storage::sqrt_p) is still set P_b, which is the
upper bound of the current bin (in this case, the very first bin).

Impact

The function swap_in_bin can set the price of the range to the lower bound of the current bin if
is_x is true or the upper bound if is_x is false when no liquidity is in the bin, but it will consume
more gas.

Recommendations

When no active bins are found in the current swap direction, we recommend setting the price of
the range to the absolute edge of the price boundary.

Remediation

This issue has been acknowledged by Bidask Protocol, and a fix was implemented in commit
af79609c ↗.

Zellic © 2025 ← Back to Contents Page 30 of 43

https://github.com/bidask-protocol/bidask-v2-core/commit/af79609c99ca48c94621c62504b8e027e19a270b

Bidask V2 Smart Contract Security Assessment April 7, 2025

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the TONmainnet.

During our assessment on the scoped Bidask V2 contracts, we discovered 10 findings. One critical
issue was found. Onewas of high impact, twowere of medium impact, four were of low impact,
and the remaining findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025 ← Back to Contents Page 43 of 43

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Bidask V2
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Potential integer overflow in the function handle_swap
	The refund operation of the LP account could be partially executed
	The native pool does not reserve the protocol fee for native tokens
	First depositor controls the pool's initial price and bin
	Noncompliant transfer-notification parsing
	Incorrect excess-amount calculation
	Duplicated gas-amount calculation
	Pool can get stuck in the INITING state
	Incorrect payload passed to the function pay_add_liquidity_fallback
	The range price could be set to the boundary when there are no active bins

	Discussion
	Dormant range contracts
	Test suite

	System Design
	Flow: Swapping tokens
	Flow: Add liquidity

	Assessment Results
	Disclaimer

