
Bidask Protocol

Bazrov Stepan
bazrovstepan@gmail.com

Malyshev Oleg
malolegmc@gmail.com

Kinelovskiy Nikita
rendseast@gmail.com

October 2024

Abstract
Since the advent of blockchain technology,

Decentralized Exchanges (DEXes) have under-
gone significant evolution, with innovations like
Uniswap v3 introducing Concentrated Liquidity
Market Maker (CLMM) models. These advance-
ments address the capital inefficiencies that were
prevalent in previous iterations, like Uniswap v2.
This paper analyzes these developments and in-
troduces a novel system optimized for the com-
plexities presented by The Open Network (TON).
Unique challenges such as the lack of atomic trans-
actions in the TON environment compelled us
to devise a distributed system of smart contracts
to manage liquidity efficiently. Our strategy in-
tegrates innovative solutions to these technical
challenges, maintaining the liquidity concentra-
tion benefits of Uniswap v3 while enhancing them
to fully leverage TON’s capabilities.

1 Introduction

DEXes have come a long way since the inception of
blockchain technology, evolving rapidly to address market
demands and inefficiencies. One of the most remarkable
advancements is the introduction of Uniswap v3, which
addresses the inherent inefficiencies associated with v2
pools. Specifically, Uniswap v2 faced limitations, where
liquidity providers (LPs) had to allocate capital across the
entire price range of a trading pair. This often resulted in
underutilized capital, reducing potential returns for LPs
and leading to inefficiencies in the liquidity market.

With the launch of Uniswap v3, the concept of Con-
centrated Liquidity Market Maker (CLMM) emerged, en-
abling LPs to concentrate their capital within specific
price ranges where they expect the most trading activity.
This innovation drastically improved capital efficiency, al-
lowing LPs to generate more fees with less capital. The
positive impact was evident almost immediately, as the
Total Value Locked (TVL) in v3 pools grew up, demon-
strating the market’s acceptance and the effectiveness of
concentrated liquidity.

Since its inception, v3’s concentrated liquidity has be-
come an fundamental aspect of DEX architecture across
various blockchains. The increasing TVL in v3 pools un-
derscores its importance and widespread adoption. How-
ever, when considering the integration of such advanced
mechanisms on unique blockchain platforms like The
Open Network (TON), several technical challenges arise.
One of the primary obstacles is the absence of atomic
transactions, as transactions in TON are composed of
asynchronous messages. This presents significant dif-
ficulties in ensuring seamless and coordinated updates
across multiple smart contracts. Additionally, storing
large amounts of data within a single contract’s storage is
complex, making it problematic to retain all the informa-
tion related to liquidity bins on one smart contract. To ad-
dress these challenges, it was necessary to develop a more
distributed system of smart contracts that could efficiently
manage and synchronize the required data. Despite these
hurdles, we has successfully implemented a CLMM-based
DEX on TON, effectively overcoming these technical bar-
riers and optimizing the network’s unique capabilities.

Figure 1: Uniswap v2 and Uniswap v3 TVLs.

1



2 Protocol Math

This section describes the mathematics behind Bidask
Protocol.

2.1 AMM and bins

The classic AMM in Uniswap v2 operates with a pool
where the possible proportions of tokens are described by
the constant product formula:

xy = k [1]

Let P = y
x . This value is called the price and describes

how many tokens y you need to give for 1 token x.

Let also k = L2, then xy = L2, and L is the amount
of both tokens when the price, or proportion, stabilizes
to one (1:1). We call this value liquidity. Liquidity is a
property of the pool and it determines the curve of its
graph.

In Bidask, the price line is divided into bins by ticks,
the positions of which are calculated using the formula:

(1 + β)i

where:

• β – bin step: percentage of price movement between
ticks. For example: 0.001.

• i – tick number, ∈ (−∞; +∞).

Accordingly, a bin with number i lies within the price
bounds: [

(1 + β)i; (1 + β)i+1
)

Token proportions in bin i are described by the formula:

(x+
L

√
pb

)(y + L
√
pa) = L2 [2] (1)

This formula ”pins” a segment of the constant prod-
uct curve from price pa to pb to the coordinate
axes. Thus, on the curve of possible propor-
tions, there are points at which one of the to-
kens can be completely exhausted (equal to zero).

In it:

• pa – lower price bound of the bin.

• pb – upper price bound of the bin.

• L – almost the same as in the classic AMM. The
amount of each of the virtual tokens, in case the
price is equal to one. The price at one can be out-
side the bin, but if the segment describing the bin is
”moved” back to the full AMM graph, then the nec-
essary (virtual) tokens will be ”added” by the x and
y coordinates, and the price can be virtually shifted
to one.

It is important to note that pa and pb here are not nec-
essarily tied to ticks, the formula is universal. Thus, bins
essentially ”split” one pool into many smaller pools, each
described by price bounds and its L.

2.2 Liquidity

Let’s learn to find x and y by L (and range bounds) and
vice versa based on formula (1). First, it is easy to derive
formulas for L of one of the assets, for example:

2.2.1 For x

Here’s the basic formula again:

(x+
L

√
pb

)(y + L
√
pa) = L2

Turn y into 0:

(x+
L

√
pb

)L
√
pa = L2

Divide both sides by L:

(x+
L

√
pb

)
√
pa = L

Open the brackets:

x
√
pa + L

√
pa√
pb

= L

Rearrange:

x
√
pa = L− L

√
pa√
pb

2



And, finally, express x:

x =
L

√
pa

− L
√
pb

= L

√
pb −

√
pa√

pa ·
√
pb

(2)

Accordingly, L with a given x:

L = x

√
pa ·

√
pb√

pb −
√
pa

(3)

This formula calculates what the virtual liquidity is given
x in the specified price range, i.e., what the root of the
constant product would be if such an amount of x lay in
this range in the classic AMM.

2.2.2 For y

Similarly, turn x into 0:

L
√
pb

(y + L
√
pa) = L2

Divide:
y

√
pb

+ L

√
pa√
pb

= L

And express:

y = L(
√
pb −

√
pa) (4)

L with a given y:

L =
y

√
pb −

√
pa

(5)

2.2.3 With the price inside the range

As mentioned above, the liquidity formula is universal, so
it does not matter how liquidity is calculated relative to
the bin bounds. Since the calculated liquidity character-
izes the AMM curve, the liquidity uniquely determines the
amount of the token in some range and vice versa. From
this property and formulas (3) and (5), we can derive an
equation characteristic of the range in which liquidity is
provided while maintaining the constant product (in our
case, such a range is any bin):

x

√
P · √pb

√
pb −

√
P

=
y√

P −√
pa

[3]

When adding a random amount of two tokens in a cer-
tain proportion, this proportion is not always maintained.
To maintain it, either the missing token must be added,
or the excess of the other must be returned. The first
option is not suitable, so we need to be able to calculate
the excess. The amount of x and y inside the bin is deter-
mined relative to each other and the calculated L on them
is equal. Knowing this, the excess can be easily found:

∆L = min

(
∆x ·

√
P · √pb

√
pb −

√
P
,

∆y√
P −√

pa

)

xexcess = ∆x−∆L

√
pb −

√
P

√
P · √pb

yexcess = ∆y −∆L(
√
P −√

pa)

2.2.4 Examples

Since L is the value of one of the tokens at price 1, in-
cluding x, as the range approaches [1;+∞), x and L must
approach equality. And so:

lim
[pa;pb]→[1;+∞)

x

lim
[pa;pb]→[1;+∞)

L
√
pa

− L
√
pb

lim
pb→∞

L− L
√
pb

= L

Similarly, L approaches equality with y, but in the first
half of the entire range – (0; 1]:

lim
[pa;pb]→(0;1]

y

lim
[pa;pb]→(0;1]

L(
√
pb −

√
pa)

lim
pa→0

L(1−√
pa) = L

2.2.5 Minting LP Tokens

The mathematics of minting LP tokens is similar to
Uniswap v2:

LPminted =
xdeposited

xstarting
· LPstarting [1]

In essence, LPs are issued according to the deposited
share, and thanks to the dependence on the current pool
size xstarting, the ”accumulated” fees up to this point re-
main only in the share of those who previously entered
the pool.

2.3 Swapping Process

This section describes the known approaches to the swap
algorithm and Bidask Protocol approach.

2.3.1 Uniswap v2 approach

In a simple Uniswap v2 pool, the amounts of tokens X
and Y are stored, and the swap algorithm is simple: the
fee is taken from the incoming token, a swap occurs with
the new amount while keeping the constant product, Y
decreases by the required amount sent to the user, and X
increases by the full amount sent by the user.

∆x = (1− f) · xin (6)

∆y = y − L2

x+∆x

(x+ xin)(y −∆y) = L2
new

Note that when adding the fee to the pool, the proportion
is not maintained, as the amount of Y does not decrease.
Instead, L increases, which indicates the pool’s liquidity.

In the case of Bidask, this direct approach is not appli-
cable because the protocol does not store the real amounts
of each bin’s tokens, but a similar approach with virtual
tokens, described below, is applicable.

3



2.3.2 Uniswap v3 approach

In Uniswap v3, the amounts of both tokens are not explic-
itly stored. Instead, the protocol stores the square root of
the current price

√
P and the liquidity L of each bin1.

The algorithm for finding the amount of tokens to be
sent to the user during a swap is as follows: first, it is
necessary to find the price movement when buying, for
example, X:

∆
√
P =

∆y

L
(7)

Or the movement of the inverse price when selling X:

∆
1√
P

=
∆x

L
(8)

Then the opposite delta is calculated:

∆
1√
P

=
1√

P +∆
√
P

− 1√
P

or, if ∆ 1√
P

is known:

∆
√
P =

1
1√
P
+∆ 1√

P

−
√
P

Then the amount of tokens to be sent to user is found
accordingly:

∆y = ∆
√
P · L

∆x = ∆
1√
P

· L

And the price is updated:
√
P new =

√
P +∆

√
P

In Uniswap v3, liquidity provider fees, as well as proto-
col fees, are calculated similarly to v2 approach (6) and
collected separately, so their recompounding into the pool
does not require further calculations.

This option for fees accounting is also undesirable, be-
cause requires separate storage of earned commissions,
which makes auto-recompound impossible, as with sim-
ple AMM, when fees are ”built-in” into TP-tokens.

2.3.3 Bidask approach

Bidask Protocol implements an algorithm where the price
generally only moves as much as the user swaps, including
the fee. Thus, the fee is considered in both assets, which
slightly reduces volatility and bin change frequency. In
this method, it is also unnecessary to find virtual assets.

To perform such a swap, the delta from formulas (7)
and (8) must be reduced by the fee amount:

∆f

√
P = ∆

√
P · (1− f)

∆f
1√
P

=
1√
P

· (1− f)

Then the swap is performed as in v3. However, now L
needs to be increased by the fee amount using the follow-
ing formulas:

∆L = (1− f) · ∆y√
P

or
∆L = (1− f) ·∆x ·

√
P

and
Lnew =

√
L(∆L+ L)

2.3.4 Determining Swap Limits in the Bin

Since a bin is a pool with a limited amount of tokens,
before the swap, it is necessary to determine if there is
available liquidity in the bin. This is achieved by trim-
ming the price: taking the closest of the calculated final
price and the bin boundary price.

2.3.5 Slippage

Since TON transaction is not atomic and moving between
bins may require multiple messages, a full rollback of the
transaction due to exceeding allowable slippage is not pos-
sible. Therefore, it is set by the extreme price to which
the swap can go. This boundary limits price movement
just as the bin boundaries do.

2.3.6 Protocol Fee

Due to the impossibility of rolling back the transaction de-
scribed above, protocol fee ϕ and referral fee ρ are charged
from the returned funds and accumulates separately:

yout = ∆y · (1− ϕ) · (1− ρ)

2.4 Precision

Although the amounts of tokens are actually integers and
cannot take fractional values, it is still necessary to be
able to store fractional numbers for price operations. The
optimal solution is to set the unit to some power of two,
so many auxiliary operations will only require bit shifting.
For the fractional part, it is proposed to reserve 128 lower
bits of the int type (half). We will call these bits the pre-
cision complement, and the value 1 << 128 will be denoted
as i.

Below is how operations are transformed for correct
calculations with such a data type.

2.4.1 Multiplication

When multiplying, the precision complement is considered
twice, so it is necessary to divide (in our case, division is
equivalent to a right shift) the product by it. In TVM,
these two operations can be combined with the MULRSHIFT
opcode[5], which avoids overflow.

(x · y) << 128

2.4.2 Division and Inversion

When dividing, on the contrary, it is necessary to mul-
tiply (shift left) by the precision complement. To avoid
overflow, the LSHIFTDIV opcode[5] operation is used.

y << 128

x

i << 128

x
=

1 << 256

x
1In Uniswap v3, there are no bins per se, but liquidity between ticks is calculated from prefix sums. However, this does not change the

essence of the algorithm.

4



2.4.3 Exponentiation2

In integer arithmetic, exponents of different signs must
be processed in different branches of the conditional op-
erator. Exponentiation to a positive power is similar to
multiplication, but now we need to divide by the precision
complement not 1 time, but n− 1 times:

xn >> (128 · (n− 1))

In practice, power is calculated through a binary expo-
nentiation algorithm, modified for numbers with precision
complement.

As for the negative power, by the definition it is:
xn = 1

xn , so it is simply necessary to divide i by the
calculated positive power:

i << 128

xn >> (128 · (n− 1))

Finally, any number to the power of zero is equal to one,
so this branch simply returns i.

2.4.4 Extracting the Square Root

Extracting the square root is implemented using Heron’s
algorithm, modified for numbers with precision comple-
ment and optimized using binary search. The full imple-
mentation can be found in the Bidask Protocol code.

3 Architecture

The key challenge in developing the Bidask Protocol, com-
pared to its counterparts on EVM networks, was the ar-
chitectural design. TVM discourages the use of large data
structures due to the network’s focus on sharding and the
limits of contract memory associated with this[4]. To ad-
dress this issue, a Range smart contract (labeled as RSC
on a figure) has been implemented, which is responsible
for storing partial information about the liquidity of a spe-
cific token pair. Essentially, it functions as a sharded ar-
ray containing information about the corresponding part
of liquidity held in this pool. Range also acts as an Au-
tomated Market Maker (AMM), handling calculations re-
lated to token swaps or deposits into the liquidity pool.

Each range stores a fixed number of bins, allowing for bet-
ter control over gas expenses when interacting with this
contract. All ranges aggregated by the Pool smart con-
tract (labeled as PSC on a figure). This contract is respon-
sible for any interaction with liquidity, directing messages
to the appropriate range. In the case of a token exchange,
the pool sends a message to the range with the actual bin.
In the case of a liquidity deposit, the pool communicates
with the range responsible for the bins into which user is
adding liquidity.

To connect users with the appropriate pool, Bidask archi-
tecture incorporates a router smart contract. This con-
tract manages the storage of all tokens, responsible for
payouts, and handles routing of both swap and liquidity
deposit transactions. While it was originally derived from
the STON.fi architecture, it has been adapted to meet
new requirements.

3.1 Liquidity position handling

Due to the fragmented nature of liquidity in Bidask, which
is divided into multiple bins, a standard token smart con-
tract cannot be used to calculate a user’s share of the
overall liquidity pool. To address this, a multi-token
smart contract (hereinafter referred to as MSC) was im-
plemented. Instead of holding a single number, this multi-
token contract maintains an array of values, each repre-
senting a user’s balance of lp-tokens across different bins.

2To the power of regular int.

5



As a result, each range is paired with a dedicated MSC
for each user who deposits liquidity into it. This archi-
tecture significantly reduces gas costs for users and al-
lows each range to operate independently, interacting with
other ranges only when asset prices change and actual bin
shifts.

3.2 Wrapped TON

In addition to the core smart contracts, Bidask architec-
ture includes auxiliary components. The router smart
contract can only interact with tokens, so for handling
TON, a wrapped TON standart is used. wTON jetton-
wallet accepts TON and treats it as a token, enabling
seamless operation.

By using this approach, there is no need to account for
special cases when a user swaps TON for tokens, allowing
the system to operate only through the standard jetton-
wallet interface.

4 Conclusion

Bidask Protocol represents a marked evolution in the im-
plementation of CLMM-based DEX architectures within
The Open Network. This paper details our successful
adaptation of Uniswap v3’s mechanisms to accommodate
TON’s unique infrastructure, where asynchronous mes-
sage handling posed significant challenges. By address-
ing these issues, our approach sets a new standard for
DEX performance, optimizing both liquidity management
and transaction efficiency. As the protocol evolves, it
stands as a testament to the ability of blockchain tech-
nology to adapt and innovate, ultimately contributing to
the broader development of decentralized finance ecosys-
tems.

References

[1] Hayden Adams, Noah Zinsmeister and Dan Robinson.
2020. Uniswap v2 Core.

[2] Hayden Adams, River Keefer, Noah Zinsmeister, Dan
Robinson and Moody Salem. 2021. Uniswap v3 Core.

[3] Atis Elsts. 2021. Liquidity Math in Uniswap v3.

[4] Nikolai Durov. 2021. The Open Network.

[5] Nikolai Durov. 2020. Telegram Open Network Virtual
Machine.

6

https://app.uniswap.org/whitepaper.pdf
https://app.uniswap.org/whitepaper-v3.pdf
https://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf
https://ton.org/whitepaper.pdf
https://ton.org/tvm.pdf
https://ton.org/tvm.pdf

	Introduction
	Protocol Math
	AMM and bins
	Liquidity
	For x
	For y
	With the price inside the range
	Examples
	Minting LP Tokens

	Swapping Process
	Uniswap v2 approach
	Uniswap v3 approach
	Bidask approach
	Determining Swap Limits in the Bin
	Slippage
	Protocol Fee

	Precision
	Multiplication
	Division and Inversion
	ExponentiationTo the power of regular int.
	Extracting the Square Root


	Architecture
	Liquidity position handling
	Wrapped TON

	Conclusion

